Searches for New Physics at CDF **Andrew Ivanov** Kansas State University CDF Collaboration Lake Louise Winter Institute - 2011 23 February, 2011 # New Physics Searches at CDF - Searches for Resonances: - Search for Z' - Search for W' - Search for 3-jet resonances - Searches for New Pair Produced Quarks: - t'-> tX - b'-> tW - Search for anomalous production - In lbγMET - See Ray Culbertson's talk on searches in photon + X signatures - Event Selection: - Two isolated μ : $p_T > 30 \text{ GeV}$ - m(μμ) > 130 GeV - Cosmic veto - Updated result on Z'-> $\mu\mu$ search using 4.6 fb⁻¹ dataset - Improved (~20%) sensitivity by using the Matrix Element technique - More generic statistical treatment : - Designed to be sensitive to any bump in the di-muon mass spectrum (Z', RS Gravitions spin2, RPV v) independent on the cross section for new physics signal - NNLO Drell-Yan normalized to low mass - WW and tt from MC (46 ± 2 events) - Fakes and cosmic using data-driven methods (8 ± 1) - 1851 ± 90 events expected - 1813 observed - Use PYTHIA for spin-1 Z' and Madgraph for spin-0 and spin2 - Largest uncertainty due to PDFs - Shape distortion and acceptance drop due to small PDF at ~ 1 TeV • Observed limits for various Z' scenarios, exclude Z' with SM couplings below 1.07 TeV at 95% C.L. | Model | Mass Limit (GeV/c^2) | |-----------------------------------|-------------------------------| | Z_l' | 817 | | Z_{sec}^{\prime} | 858 | | Z_N^\prime | 900 | | Z_ψ' | 917 | | $Z_{_{\scriptscriptstyle Y}}^{'}$ | 930 | | $Z_n^{\hat{r}}$ | 938 | | Z_{SM}^{\prime} | 1071 | • 2D analysis of $(M_{Z'}, Z')$ fraction - independent) # W' Search - W' boson appears in breaking symmetry of $SU(2)_R \times SU(2)_L \times U(1)_{B,L}$ - Search for W'->ev_e - Require - Isolated electron with E_T > 25 GeV - An additional trigger at $E_T > 70$ GeV to increase electron efficiency - MET > 25 GeV - To reduce QCD background: $$0.4 < E_T / MET < 2.5$$ ### W' Search - Assume that W' V+A coupling are of the same strength as V-A - Transverse mass distribution smeared for high-mass bosons due to smallness of PDFs - Acceptance drops at high masses due to inefficiency of ultra-high E_T electrons (E_T > 500 GeV) ### W' Search - Perform a binned likelihood fit to a combination of background and signal - Systematic uncertainties are dominated by PDF - Exclude m(W') < 1.1 TeV at 95%C.L. - arXiv: 1012.5145 - Search for pp->QQ -> 3j + 3j (final state with 6 or more jets) - Look at all possible combinations in an multijet - Each event has an "ensemble" of 20 or more triplets - Event Selection: - At least 6 jets with p_T > 15 GeV/c from the same vertex - Σ_6 p_T > 250 GeV/c - Missing E_T < 50 GeV Signal examples: †† RPV gluino: - Analysis strategy: - Apply diagonal cut: - Σ_{3j} p_T m(jjj) > α Optimized for each gluino mass - · Fit the final mass cut - Use statistically independent 5-jet sample to model QCD background (Landau-shape) Signal is a combination of Gaus (correct triplet combination) and Landau (wrong combination) #### Fit: #### For various diagonal offset cuts #### Data Results: For benchmark scenario exclude gluino mass below 144 GeV - Exotic 4-th generation quarks t'-> tX, where X is a dark matter candidate - J.Feng et al, arXiv:1002.3366 - Other scenario:stop -> top + neutralino - Signature tt + MET - Select e OR μ with $p_T > 20$ GeV - >=4 jets , E_T > 20 GeV - MET > 100-160 GeV - Dominant backgrounds are tt and W+jets - Analysis: Fit background + signal to W transverse mass distribution - Optimize MET cut using S/\sqrt{B} for each new physics point in $(m_{T'}, m_X)$ plane - Observe 309 events for MET > 100 GeV - Expect 310 ± 80 from SM - For MET > 150 GeV - 42 data events (45± 14 exp.) $m_T^W [GeV/c^2]$ Test modeling of distributions in control regions (= 3 jets, low MET) - Scan 2D-plane of $(m_{T'}, m_X)$ - Set a 95% limit using Neuman construction - No sensitivity to supersymmetric top due to small cross section - Current limits push 4-th generation down-type quark b' to be above m(t)+ m(W) mass - Electroweak precision measurement suggest small mass splitting between 4-th generation t' and b', if exist - Search for b'-> tW at CDF was previously performed using samesign lepton events - New search uses "lepton+jets" signature - High acceptance due to hadronically decaying W's - Search for b'b'-> ttWW by fitting to - H_T = scalar Σ (Jet E_T + lepton E_T + MET) across different jet multiplicity bins - Search for b'b'-> ttWW by fitting to - H_T = scalar Σ (Jet E_T + lepton E_T + MET) across different jet multiplicity bins Exclude b' quark below 385 GeV at 95%C.L. • arXiv: 1101.5728 | CDF Run II, 6.0 fb^{-1} | | | | | | | |--|----------------------|----------------------|-------------------------|--|--|--| | Lepton + Photon + E_T + b Events, Isolated Leptons | | | | | | | | Standard Model Source | $e\gamma b E_T$ | $\mu \gamma b E_T$ | $(e + \mu)\gamma b E_T$ | | | | | $t\bar{t}\gamma$ semileptonic | 6.74 ± 1.24 | 5.91 ± 1.08 | 12.65 ± 2.29 | | | | | $t\bar{t}\gamma$ dileptonic | 3.90 ± 0.71 | 3.39 ± 0.62 | 7.29 ± 1.32 | | | | | $W^{\pm}c\gamma$ | 2.29 ± 0.45 | 2.42 ± 0.47 | 4.71 ± 0.73 | | | | | $W^{\pm}c\bar{c}\gamma$ | 0.25 ± 0.11 | 0.75 ± 0.22 | 1.00 ± 0.24 | | | | | $W^{\pm}b\bar{b}\gamma$ | 1.92 ± 0.32 | 1.46 ± 0.27 | 3.38 ± 0.48 | | | | | WZ | 0.23 ± 0.10 | 0.089 ± 0.07 | 0.31 ± 0.12 | | | | | WW | 0.29 ± 0.07 | 0.26 ± 0.06 | 0.55 ± 0.10 | | | | | Single Top (s-chan) | 0.54 ± 0.24 | 0.46 ± 0.22 | 1.00 ± 0.34 | | | | | Single Top (t-chan) | 1.13 ± 0.45 | 0.83 ± 0.38 | 1.96 ± 0.61 | | | | | $\tau \rightarrow \gamma$ fake | 0.37 ± 0.11 | 0.37 ± 0.11 | 0.74 ± 0.17 | | | | | Jet faking γ $(ej E_T b, j \rightarrow \gamma)$ | 8.88 ± 2.57 | 5.28 ± 1.67 | 14.16 ± 3.85 | | | | | Mistags | 17.37 ± 1.71 | 12.02 ± 1.18 | 29.43 ± 2.75 | | | | | QCD(Jets faking ℓ and E _T) | 14.39 ± 7.33 | 1.44 ± 0.73 | 15.83 ± 7.38 | | | | | $ee\mathbb{E}_{\mathbb{T}}b$, $e\rightarrow\gamma$ | 4.86 ± 0.71 | - | 4.86 ± 0.71 | | | | | $\mu e E_T b$, $e \rightarrow \gamma$ | - | 1.32 ± 0.23 | 1.32 ± 0.23 | | | | | Total SM Prediction | $63.2 \pm 8.1 (tot)$ | $36.0 \pm 2.6 (tot)$ | $99.1 \pm 9.3(tot)$ | | | | | Observed in Data | 51 | 34 | 85 | | | | - Signature-based search for anomalous rates or kinematics - Poissible new physiscs scenario is GMSB - Select e OR μ with p_T > 20 GeV - >=1 jets , E_T > 15 GeV - (at least one b-tagged) - MET > 20 GeV - γ, E_T > 10 GeV - Many backgrounds are evaluated using data-driven techniques and tested using control samples | CDF Run II, 6.0 fb^{-1} | | | | | | |--|----------------------|---------------------|-------------------------|--|--| | $t\bar{t}\gamma$, Isolated Leptons, Tight Chi2 on Photons | | | | | | | Standard Model Source | $e\gamma b E_T$ | $\mu \gamma b E_T$ | $(e + \mu)\gamma b E_T$ | | | | $t\bar{t}\gamma(semileptonic)$ | 5.98 ± 1.10 | 5.21 ± 0.97 | 11.19 ± 2.04 | | | | $t\bar{t}\gamma(dileptonic)$ | 1.47 ± 0.27 | 1.27 ± 0.24 | 2.74 ± 0.50 | | | | $W^{\pm}c\gamma$ | 0 ± 0.07 | 0 ± 0.07 | 0 ± 0.09 | | | | $W^{\pm}c\bar{c}\gamma$ | 0 ± 0.05 | 0.05 ± 0.05 | 0.05 ± 0.07 | | | | $W^{\pm}b\bar{b}\gamma$ | 0.15 ± 0.07 | 0.06 ± 0.05 | 0.21 ± 0.08 | | | | WZ | 0.05 ± 0.05 | 0.05 ± 0.05 | 0.09 ± 0.06 | | | | WW | 0.06 ± 0.03 | 0.06 ± 0.03 | 0.11 ± 0.03 | | | | Single Top (s-chan) | 0.09 ± 0.10 | 0 ± 0.10 | 0.09 ± 0.13 | | | | Single Top (t-chan) | 0.14 ± 0.14 | 0.13 ± 0.14 | 0.27 ± 0.19 | | | | $\tau \rightarrow \gamma$ fake | 0.20 ± 0.08 | 0.10 ± 0.05 | 0.29 ± 0.09 | | | | Jet faking γ $(ej E_T b, j \rightarrow \gamma)$ | 5.75 ± 1.76 | 1.79 ± 1.56 | 7.54 ± 2.53 | | | | Mistags | 1.47 ± 0.37 | 1.02 ± 0.32 | 2.50 ± 0.51 | | | | QCD(Jets faking ℓ and E_T) | 0.38 ± 0.38 | 0.02 ± 0.020 | 0.40 ± 0.38 | | | | $ee \mathbb{E}_T b$, $e \rightarrow \gamma$ | 0.94 ± 0.19 | - | 0.94 ± 0.19 | | | | $\mu e \mathbb{E}_T b$, $e \rightarrow \gamma$ | - | 0.49 ± 0.11 | 0.49 ± 0.11 | | | | Total SM Prediction | $16.7 \pm 2.2 (tot)$ | $10.3 \pm 1.9(tot)$ | $26.9 \pm 3.4(tot)$ | | | | Observed in Data | 17 | 13 | 30 | | | - Select tt events applying an additional H_T > 200 GeV - >=3 jets , E_T > 15 GeV - (at least one b-tagged) - The largest contributing process is ttγ - Good agreement with SM predictions Measure ttbar+γ cross section 0.18 ± 0.07 pb In agreement with SM 0.17 ± 0.03 pb # Summary - Tevatron continues taking data and continues to push - for better/improved limits on new particle production and - exercises more advanced techniques that are applicable and being applied at LHC - More details about these and other results are available at: - http://www-cdf.fnal.gov/physics/physics.html